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ABSTRACr 

A simple time series model for bivariate exponential variables 
having first-order autoregressive structure is presented. The linear 
random coefficient difference equation model is an adaptation of the New 
Exponential Autoregressive model (NEAR (2)). The process is Markovian 
in the bivariate sense and has correlation structure analogous to that 
of the Gaussian AR(1) bivariate time series model. The model exhibits a 
full range of positive correlations and cross-correlations. With some 
modification in either the innovation or the random coefficients, the 
model admits some negative values for the cross-correlations. The 
marginal processes are shown to have correlation structure of ARMA(2.1) 
models. 

Key Words: Time Series; Bivariate Exponential Distribution: 
Autoregressive Models; NEAR(2); ARMA(2.1} Models; Gaussian 
AR(1) Bivariate Time Series Model. 

1. INTRODUCTION 

The homogeneous Poisson process Is a basic model for point processes 

(series of events) and can be characterized as a process in which the 

intervals between events are independent and identically exponentially 

distributed random variables.  One generalization of the homogeneous 

Cox (1955).  See Cox and Lewis (1966, Ch. 7) for details.  Later, this 

-t 
Poisson process has been to relax the condition on independence of      O 

D 
intervals.  The earliest attempts to do this go back to Wold (1948) and  . .  

y Codes 
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need for point processes with correlated but marginally exponential 

distributions inspired the creation of a class of ARMA time series 

models for the univariate exponential processes analogous to that for 

the Gaussian processes (Gaver and Lewis. 1980; Lawrence and Lewis, 1981. 

1985). Beyond their utility in point processes, these models are 

utilized in studying queues (Jacobs. 1978; 1980). inventory and water 

resources problems, and other situations where non-negative random 

variables are appropriate for Inputs. Using antithetic variables as 

innovation or error structure, these models also allow for negative 

dependence (see Lewis. 1986. for a survey). 

We demonstrate that one of the more recent exponential models with 

ARMA correlation strucutre. NEAR(2). by Lawrence and Lewis (1985), lends 

itself naturally to a first-order blvarlate autoregresslve process which 

is Narkovlan In the blvarlate sense, and has a structure analogous to 

that of the Gaussian AR(1) blvarlate time series model as given in Tiao 

and Box (1981), and elsewhere. Early attempts to construct blvarlate 

exponential time series and blvarlate Polsson processes are discussed in 

Cox and Lewis (1971). The present model is broader and simpler than any 

previously obtained, including the MEAR(l) model by Raftery (1982). 

which turns out to be a special case of the present model for the 

blvarlate case, and the models of Jacobs (1978, 1980), Lewis and Shedler 

(1977), and Gaver and Lewis (1980). All of these models were defined 

using the NEAR(l) structure, and this does not allow for the breadth 

obtained by using the NEAR(2) structure. 

With the general model it is, for example, possible to construct 

simple blvarlate, serially correlated models for the successive up and 
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down times which occur in reliability studies, or for correlated and 

cross-correlated service and interarrival sequences in queueing systems. 

2. THE UNIVARIATE NEAR(2} MODEL 

By the NEAR(2) theorem (Lawrance and Lewis, 1985). we know that two 

(possibly dependent) random variables with marginally Exponential(X) 

distributions can be combined with three scaled (possibly dependent) 

exponentials which are Independent of the first pair, to give another 

random variable that Is marginally exponentially distributed with 

parameter X. We assume in the remainder of this presentation that 

X = 1. The essence of the N£AR(2) theorem is repeated without proof. 

THEOREM (Lawrance and Lewis) 

If {E } is an 1.1.d. sequence of exponential random variables and the 

parameters  otj, 0-, o^. ß2 are such that  0 < a.  <1  for 1=1,2; 

0 < otj + a2 < 1 and 0 < ßj. ß2 < 1 and if X0 .- EQ, then 

^n-l w.p. al '  E„ w.p. 1-P2-P3 

X    = n ^2Xn-2 w.p. a2 
+ "A w.p. p2 

0 w.p. l-aj-ag Vn w.p. P3. 

(2.1) 

defines a stationary sequence {X } which is marginally exponentially 

distributed with X=l. The quantities b«. b», p_, p^ have values in 

the Interval (0.1) and are defined in Lawrance and Lewis (1985); the 

mixture of the exponential random variables on the right in (2.1) Is 

called the Innovation random variable. 
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A special case of the NEAR(2) nodel which is not covered by the 

theorem, but obtained directly from the usual analysis with transforms. 

is the case when ß. s ß2 - 1. In this case, still assuming 

a,  +0« < 1, we have 

X = 
n 

Xn-1   wp- al 

Xn-2   wp- ^ 

0     w.p.  l-o.-otg 

+ (Inapt^.    (2.2) 

This is the TEAR{2) model. It has two advantages for our purposes; one 

that it only uses two parameters instead of four in the complete NEAR(2) 

model: and the other that it has a simpler innovation structure. The 

model exhibits, however, a "runs-up" behavior in the sample paths. 

Nevertheless, we will use the TEAR(2) model as the base for construction 

of the bivariate exponential model, even though other three- and 

two-parameter subclasses of the NEAR(2) process may be 

phenoroenologically more suitable. For example, in hydrology the time 

series which occur generally exhibit a "runs-down" behavior. However, 

the ideas in developing the bivariate process are the same. 

3.    BIVARIATE. MARKOVIAN TIME SERIES FOR EXPONENTIAL RANDOM VARIABLES 

Let    {X ,Y }    be a bivariate sequence of random variables,  such that n   n 

<x„> and {Y }   are each stationary sequences of marginally 

exponentially distributed random variables with X=l. 

our first bivariate exponential model, using (2.2), as 

Then we define 

X = K^X . + KJ^Y , + (l-a11-o10)E n   11 n-1   12 n-1  v  11 12' n 
(3.1) 
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and 

''n " 4?' X„-l * "zl'Vl + V-^-^lVn- 
In this equation 

(3.2) 

fK(n) 
lKll ' 

K(n). 
K12 ' 

(0.1)   w.p. a12 

(1,0)   w.p. a 

(0,0)   w.p 

11 

^n^ns 

and are serially independent: 

O4J), Kg>)- 
(o.i) w.p.    022 

(i.o) w.p.    «^ 

(0.0) w.p.    l-a21-a22 

are also serially independent and independent of {K;. . KJ«-'} for all 

n.  Likewise {E } and  {£'} are independent Innovation sequences of 

i.i.d.  Exponential(X=l)  random variables.  Finally, we insist that 

all + a12 < 1 8110 a22 + a21<1- If all+a12 = 1 axui 

QUg + a21  = 1,    then the process is not ergodic.    In this case,    {X ,Y } 

is always one of  the pairs     (E-.E').   (Ej.E.),   (Ej.Ej)   (E'E.)     for all 

n.      Note   that     X    ,      and     Y _1      in,   e.g..   Equation   (3.1)   are  not 

independent;  this is the reason for the use of the NEAR(2) construction. 

We observe that    {X },     (Y )    are each TEAR(2) constructions in that 

Y    -     in (3.1) replaced    X    .     in (2.1), and similarly    X^j     in (3.2) 

replaced    Y   0.     Also,     (X  ,Y )     is,  given the value of     (X    ..Y    .), xi-£ n   n n—1    n-i 

completely  Independent of  previous values     (^if.^i,)     ^or     ^ ^ n~2     for 
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all n.    Again    '(Xnlxn_i = x>  Y
n_i ■ y)    l8 a linear function of    (x.y) 

and  likewise  for     Y .     Thus,   the model   Is Markovlan  In  the blvarlate n 

sense, both structurally and In the sense of expectations. 

Note, however, that {X } and {Y } are nfit marginally TEAR(l) 

processes, and. In fact, are not marginally Markovlan. In particular, 

their correlations are not necessarily geometrically decaying, as will 

be demonstrated later. If aii = aoo = ^> we obtain the blvarlate 

exponential process described by Gaver and Lewis (1960). The process 

(Y } is then called the dual of the process {X }. 

Clearly, other special combinations of the a. . give other models 

with 1. 2. or 3 parameters. Of course, there could be from 5 to 8 total 

parameters by using the more general NEAR(2) construction. Thus, from 

(2.1). (3.1). and (3.2). replace K[^ by ß K^. 0 < ß < 1. One 

requires then, however, the more complicated innovation structure given 

in (2.1) for the innovation in (3.1) and (3.2). 

4. OORRELATIOH STRUCTURE OF TOE MODEL 

The marginal processes defined above are exponentially distributed 
2 

with mean 1/X and variance 1/X . Thus, if we set the scale parameter 

X equal to 1, correlations and covarlance are equal.  Since we assume 

(Y }. {X } are Jointly stationary, we have 

t^ie)  = «(XnXn_p - 1,   « = 0, 1, 2, .-.,     (4.1) 

-r^it)  = *iW„e)  " 1.   « = 0, 1, 2, •••.     (4.2) 

for the autocovarlance functions.    Similarly. 
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y^ii)  = «(XnYn_€) - 1   « = 0. ± 1. ± 2. •••.   (4.3) 

Is the cross-covarlance function. 

The following results are Immediately obtained using (3.1), (3,2), 

(4.1) - (4.3) and the stationary assumption: 

^(0) = ^(0) = 1: (4.4) 

^(0) = ^(0) = (a^ajg + a^J/il - ia2^in + 02^2)): (4.5) 

•yxx(«) = -TJO^-O for all i; (4.6) 

•rYY(«) = t^i-i)  for all i; (4.7) 

-r^fi*)  = fyx*"') for a11 ': (4.8a) 

-r^«) = t^fi-i)  for all i. (4.8b) 

Autocovarlance functons are even functions of the  lag i,      but the 

cross-covarlance Is not. 

The range of ^wfO) = ^vvC^) as given In (4.5) Is the full range 

of non-negative values up to one. Using the Generalized Reduced 

Gradient (GRG) algorithm, we find that the maximum takes place along the 

boundary «u + fljo + t = 1 and oug + Og- + t = 1 for arbitrary e > 0, 

in which case we obtained covarlances as close to one as desired. Of 

course,  for strictly positive   a..   that satisfy the original 
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constraints. ^vyC^) cannot be negative. We show In Section 5 how to 

incorporate negative correlations into the model. 

Using Equations (3.1), (3.2). (4.1)-(4.8) and the stationary assumption, 

we obtain the following recursion equations for ^vyO» "VyC^)- 

Txy(«). Tyx^): 

^(.t)  = «n^XX^"1^ + "IO^VYC"1).    i = 1.2.'". (4.9) '12'YX 

tyfii)  = fl^^YY^"1^ + ^l^XY^"1^'    ' s 1.2.««*,     (4.10) 

^YxCO = ^i^xx^"1^ + a22TYX^"1^    « » 1.2.««»,     (4.11) 

TrYY(«) = o19'rvv(<-l) + O.-TV^-I).    I » 1.2. ■Xyv-y - -^'YY 11'XY* (4.12) 

It remains to show that these equations correspond to those given 

by. for example, Tlao and Box (1981). for the AR(1) Gaussian bivariate 

time series. We introduce the following matrix notation: 

r(o = i = 0.1,2, (4.13) 

is the covariance matrix for lag i.    Equations (3.1) and (3.2) become 

X = K X , + AE . n   n n-1    n (4.14) 
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where 

^ir0^ 0 

:          Xn* 

A 
0 1-a22-a21 

II 

n 

n 

E' n 

and 

4;) 

K(n) K12 

*72 

The matrix-valued random variable   K   assumes 9 different n 

matrix-values independent of X , and E and retains the property that 

«(K^) = aj . for all i. J. n. Then 

<(Xn) = KV^X^j) + A «(En) (4.15) 

all a12 " 1 

+ 

^l «22, 1 

^ll^J     0 

l-o, 22~a21 

Also, 

= '(«„(Vn-i * V» " [I I] 
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Thus 

- '««hVi+ «i.)^Vi)T>+ "f^-i * «i.xV> - [1 !] 

«■Vh-i ^VJ'1) + '<*WWT> ♦ '^V: <«i.)T) 

{(*EnEy)-[| I]. 

r(o) - Ki^Vi^-i <) * "«nVÄ * '^Vi^1' 

* '(*y£*T) -[} }] • (4.16) 

Solving (4.16) yields the results given by Equations (4.4) and (4.5). 

Furthersiore 

no - «(Vl-i) - '(Vcft • '(Vl-i> - [1 1] 

- «««A-i+ «iX-i> - [1 !] 

= «(^)r(0) * «(i^) [J   I] ♦ AKE^-j) - [1  }]• 

Thus 

r(i) = i(Kn)r(o) = 
all      012 

"21     "22 

r(0), (4.17) 
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Again 

n-D = «(vLi) - [1 }] 

Thus 

r(-i) = r(o)i(Kj+1) = r(i)
T 

(4.18) 

Clearly r(-l) = r(l). Because of (4.8a.b) and (4.13). we have 

n-i) = r(o r (4.19) 

and 

no 
all  a12 

^i   ^ 

r(0) for all * = 1.2. (4.20) 

Now Eolation (4.20) Is the result given by Tlao and Box. (1981. 

p 804). Therefore, the auto- and cross-covarlances in this bivariate 

exponential process in general decay gradually to zero as \t\ 

increases, for the values of a.. that satisfy the conditions in 

Section 3. Numerical examples are given in Section 6. and further 

discussion of the auto-correlations is presented in Section 7. 
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In principle, one can use standard estimates of auto- and 

cross-correlations (Kendall and Stuart. 1963. pp. 661-662) to obtain 

estimates of r(0) and r(l) as 

C(0) 

1    C^O) 

0^(0)    1 
(4.21) 

and 

C(l) 

C^d) 0^(1) 

SxW  ^ 
(1) 

(4.22) 

Then (4.20) yields estimates of a...  ouj, o.«, a«« as 

all  a12 

^i  ^ 

{C(1)}{C(0)} 
-1 

(4.23) 

Like most moment estimates, these are likely to be fairly poor for small 

sample size. 

An example is given in Table 4.1 where we have performed a 

simulation of the estimation of cc... a]2, ou. and ou- based on (4.23). 

Here 10 replications were used and the true values were o.. = 0.70; 

a12 = 0.20; a*. = 0.30: aun s 0.50. The 10 series were run out to 

n = 600 and the first 100 values were discarded as being nonstationary. 

The boxplots in the tables show the distribution of the tabulated values 
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In the columns.  The estmates show no evidence of departure from 

normality, although the number of replications Is small. 

TABLE 4.1 

Replica Ion  o.j = 0.70   o12 = 0.20   a^ = 0.30   a^ = 0.50 

.»3 

.70 

.IT 

.72 

.74 

.!• 

.•( 
9 
a 

.70     • 

.It 

.17 

.10 

.01 

.17 

.» 

.11 o 

« 

■ n 

.10 

.17 

.11 

.39 

.21 

1 
.IS 

.10 

.11 

.33 

.32 

.31 

.41     Jj 

.11 

.20 

.11 

.20 

.00 

.10 

.00 

5. NEGATIVE EEPENEENCE 

As pointed out In the last section, the first blvarlate exponential 

model discussed above can produce only positive correlations. Negative 

correlation Is obtainable In one of two ways - through correlation In 

the blvarlate Innovation {E ,E } and/or through the correlation In the 
n a 

attenuation controlled by the Kj.'. These Ideas are relaxations of the 

conditions established In Section 3 where {E } and {£'} are assumed 
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to be i.i.d. exponential sequences and {Kj, . K:» } Is an Independent 

identically distributed blvarlate sequence Independent of {^QI • ^o ) 

for all n. 

It Is easy to see that these schemes affect directly only the zero 

lag covarlances, r(0), and that (4.20) still holds. Thus, It Is only 

necessary here to derive the effect on r(0) of correlation In the 

Innovation or attenuation sequences. 

5.1.    Correlated Innovations. 

As a first example,  consider the model of Section 3 and let 

^^n'^k) - 

a     k=0 
(5.1) 

0     otherwise. 

Now Equation (4.5) becomes 

Moran (1967)  showed that  if     {E }    and    {£'}    eure pairs of exponential 

random variables with   X = 1,    then -.6449 ^ a ^ 1.    If E' = a(E ),    the 
n    n 

antithetic transform of E (see for example Gaver and Lewis, 1960). 

then a takes on its maximum negative value. It is clear that if 

a < 0, then (5.2) could be negative for some choices of the BJ/S* 

The process cannot be uncoupled as described previously. 

Estimation of a proceeds as before. The parameters o... a.«. 

a2r "22 &re estiinate^ ^y (4-23) and then (5.2) can be easily solved 

for an estimate of a. 
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5.11. Correlation In the Random Coefficients. 

Consider now the model of Section 3 In the form of (4.14). 

r(n) 
n 

defines a quadruple where each KV' has a marginal distribution and each 

row has an Independent blvarlate distribution for each n. If K is 

now defined so that the rows are not stochastically independent of each 

other, then (4.5) becomes 

,m      ^l°21^lg°gj * ^ll^l^.aZ^ll.SB*^^      ,, ,. 
™{} ^^n^^^l)--11.22 "«12.21        *    (   ^ 

where 

lj.«m 

Cov{K{^.Ki;+k>} Vm k = 0 

otherwise. 
(5.4) 

This correlation must be introduced in such a way that the marginal 

distributions are not altered. This may not be easy. 

The following example using Kj"' = KA!)'  for all n demonstrates 

the above ideas. Define K  as follows: 
n 

K(n) „(n) 
Kll   K12 

= K
n = 

^(n) „(n) 
hi  hi , 

n 

[?S] 

W.p.   OJJ. 

W.p. Ogjttjg. 

w.p. Oj^l-Ogj). (5.5) 

W.p. ^(l-fljg). 

w.p. 1 - (an+aja^r«^!)' 
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where a^. a12. o^j as before, and also 0 i au*ai2*a21~al^l2l ^ l• 

It is easily verified that the narglnal distributions of the quadruple 

are retained and.  specifically,  that 

l(Kn) = 

all     a12 

^l     all 

(5.6) 

For K  defined by (5.5) we have, from (5.3) 

W0>  =  1 - («n^^l) 
(5.7) 

This follows because an21 = ^^1 al222 = -O^OJJ; an ^ = 

a11(l-a11) and a12 21 « 0. with 0 i «n+a^ ^ !: 0 i "n*0^! ^ 1; 

0 ^ aii+ai2+a2i~ai2a21 ^ ^' Using again GRG. we find "twi®) attains 

the full range of positive correlations as before. It has a max 

negative correlation of -.125 at a.. = .25. a.« = ou- ■ .5. This 

corresponds to one of the cases where K / 0 for any n. 

Considering the bivariate model with K  given by (5.5) and with 

all = 0, we 8ee that ''XY^^ = 0 = ifYX(2k), k = 0,1.2,»»». Resolving 

(4.9) - (4.12) yields 

r(k) = 

ik 
'12 

«21  0 
k = 1.2. 

and 

r(0) = 
1  0 

0  1 
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This is the correlation structure of the dual process of Gaver and Lewis 

(1960).    No negative correlation is possible in this configuration. 

Lewis and Lawrance (1961) considered the model with correlation in 

the random coefficients and made KJ«' and Kl*' have the maximum 

possible negative correlation, obtaining 

v«» -1 - p&^p <0- 

where 

a = Cov(K^. 4^)=a12i21<0. 

Considering the bivariate model with  K   given by (5.5) with 

a12 = a«. = 0. then "W^) = «JJ and the resolution of (4.9) - (4.12) 

with (5.7) yields the following structure. Marginally {Xn} and (Y } 

are univariate TEAR(l) processes, since the Y 's do not appear in the 

definition of the  X 's  and vice versa.  Moreover, TvvC) = <»,. n AT     ii 

- twW' t - 0,1,2.***. Therefore, there is no negative correlation 

nor any way to uncouple the bivariate process into two independent 

univariate TEAR(l) processes unless a.. = 0. Of course, if a,. = 0. 

there is then no dependence in the marginal processes either. The 

bivariate process with a.. / 0 is shown in the next section to have 

Moran's Bivariate Exponential distribution. 

Finally, we observe that if aii4aio4aoi s * ln (5-7), we have 

'rXy(0) s 0. Thus, the pairs (X ,Y ) are uncorrelated for all n and 

yet the processes {X ) and {Y } are not at all independent. This 

can be seen from the fact that TwO) = «,« ^ 0 a™1 ^YY^1^ " a21 ^ ^' 
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5.111.    Correlated Innovations and Random Coefficients. 

If   there  Is dependence  from both  the  Innovation and  cross-coupled 

attenuation, then a general expression for (4.5) becomes 

^ 1 " Glf^fl? ' ^12.21^11.22^ Z QA 

The Interesting point to be made here is that the effects are additive 

In the numerator of (5.8). This general model is called the BEAR(l) 

model. 

6. NUMERICAL EXAMPLES OF OOVARIANCE MATRICES. 

The form of r(l) given in (4.20) can be misleading. Since the 

form of r(l) Is analogous to that of a unlvariate AR(1) process, one 

might think that the elements of r(l) should experience a geometric 

decay as \t\ increases. In fact, auto- and cross-covarlances can 

exhibit many different patterns depending on the innovation and the 

attenuation structures of the model. Some illustrative examples follow. 

In Table 6.1 an example is described where "VyW Is given by 

(4.5). Although the auto-covariance functions decrease monotonlcally. 

it is not at all like a geometric decay. 

In Table 6.2. an example corresponding to "wW es given in (5.2) 

is exhibited. This case demonstrates that negative correlation in the 

blvarlate innovation can create negative cross-covar lances at lag zero. 

It can also cause oscillation in the values of the auto- and cross- 

covarlance functions at subsequent lags.  Also, note for this example 
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that ■ Imply by Interchanging a., for a.« and Ogj for o^, we can 

create another blvarlate series with the same r(0). but with auto- 

covarlance functions iwCO and "r^ii) that are almost geometrically 

decaying. 

In Table 6.3. we give a final example corresponding to ^wi®) from 

(5.3). It is. in fact, the example given for K in (5.5). Again. 

TXy(0) is negative. However, note that although the auto-covarlance 

functions are generally decreasipg, the movement is not monotone as in 

Table 6.1. and certainly not decreasing geometrically. 

It is apparent from all examples that as \i\ increases. r(l) 

approaches the zero matrix. In fact, since the eigenvalues of the 

matrix are less than one, the components of r{i)   all decrease to zero. 

TABLE 6.1 Covarlance Matrix Corresponding to (4.5) 

all "   2 a12 = .7 a21 = .3 a22s   S 

e -r^ii) V) V) V> 

0 1.0000 0.5942 0.5942 1.0000 
i 0.6159 0.5971 0.8188 0.6783 
2 0.5412 0.4833 0.6386 0.5848 
3 0.4466 0.4040 0.5371 0.4840 
4 0.3721 0.3360 0.4462 0.4031 
5 0.3096 0.2796 0.3714 0.3354 
6 0.2577 0.2327 0.3091 0.2791 
7 0.2144 0.1936 0.2572 0.2323 
8 0.1784 0.1611 0.2140 0.1933 
9 0.1485 0.1341 0.1781 0.1609 
10 0.1236 0.1116 0.1482 0.1339 

25     0.0089      0.0081      0.0106      0.0097 
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TABLE 6.2 Covariance Matrix Corresponding to (5.2) 

"11 - '<* 
a12 = .60 

a m 
«21 -•40 

-.6449 
«22 s '0l 

e ^(O ^(0 V«) ^(0 

0 1.0000 -0.1411 -0.1411 1.0000 
i -0.0347 0.3986 0.5929 -0.0464 
2 0.2374 -0.0099 0.0018 0.2367 
3 0.0059 0.0949 0.1421 0.0031 
4 0.0572 0.0033 0.0090 0.0569 
5 0.0048 0.0229 0.0346 0.0042 
6 0.0140 0.0021 0.0043 0.0139 
7 0.0020 0.0056 0.0086 0.0019 
8 0.0035 0.0009 0.0016 0.0035 
9 0.0007 0.0014 0.0022 0.0007 
10 0.0009 0.0002 0.0005 0.0009 

TABLE 6.3 Covariance Matrix Corresponding to (5.3) 

all ■ •25 «12 s ,60 «2,..40 a^ =.25 

an.22sl~A a12.22's-15 "ll^58 •1875 a12.21- 0 

i W) ^(0 ^(0 -r^i) 

0 1.0000 -0.1225 -0.1225 1.0000 
i 0.1765 0.3694 0.5694 0.2010 
2 0.2659 0.1629 0.2629 0.2780 
3 0.1642 0.1470 0.2325 0.1747 
4 0.1293 0.1024 0.1629 0.1367 
5 0.0938 0.0773 0.1227 0.0993 
6 0.0698 0.0568 0.0903 0.0739 
7 0.0516 0.0421 0.0669 0.0546 
8 0.0382 0.0312 0.0495 0.0404 
9 0.0282 0.0231 0.0366 0.0299 
10 0.0209 0.0171 0.0271 0.0221 
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7. THE NARCINAL FBKfSS. 

Writing  K - l{Kn) - 

relationship 

all   a12 

«21   «22 

we have from (4.20) the 

r(«) - jfrio). (7.1) 

Further,    since     K      Is   a   square   matrix,   the   well-known  Gay lay- 

Hamilton Theorem prolvdes   that   there  exists  constants     f.     and     ♦„. 

such that 

K2 - ♦!« - *2l = 0. 

Applying this result to (7.1) yields 

HO - ♦Ir(«-1) - ^(«-2) =0. il2. (7.2) 

The difference Equation (7.2) applies to each element of the matrix 

r(£)'   Hence, for example, the autocorrelation function of   (X } n 

satisfies 

PXX(<) " ♦iAxx(«-l) " VXX('"2) = ^ * i2- 

Thus. In general.  {X } has the correlation structure of an ARNA(2,1) 

process.  In addition, the lag 1 autocorrelation may be derived from 
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(7.1) when t * I. In particular. ^vvO) « 0ii'rxx^ + a12tYK^' "^ 

since TwCO) = ^(0) = *• we find that ^XX^1^ = all + a12pYX^0^' 

Further, the constants $.    and ♦„ may be obtained In terns of the 

elements of K. It may be shown directly that $. = (a.^Hi^) and 

+2 = C0!?0?!-0!!0^)- Thus, in summary, the autocorrelation functions 

for the marginal processes {X }. {Y } satisfy 

p(i)  = ian+a22)pie-l)  + (a12a21-o11a22)p(*-2).   (7.3) 

for i i 2.    and 

PXX(1) =all +a12PYX(0^ (7-4) 

PYYCI) = «22 + "21^^' ^7-5J 

In general. {X } and {Y } have correlation structures of 

ARNA(2.1) processes. In any particular case, their actual form will 

depend upon the values i*1**}- The marginal processes will have 

ARMA(p.q) correlations, where p ^ 2 and q £ 1. We illustrate these 

ideas with some examples. 

(1) Using a.« = a0. = 0 results In the X and Y processes being 

Independent TEAR(l)  processes.    From  (7.4)  and  (7.5). 

^XX^ = air pyy^ ~ a22"   ar*' usinS (7-3) w« obtain 
t I 

Pxx(*) = «ii  and  PyyC*) = a22-  The bivariate system has 

become 

X = K^h    .  + (l-a.JE n   11 n-1  v  11' n. 
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Yn = ^n-l * V-*22K- 

where PCKJJ^I) = an    and P(IC^^=1) = a^. and K^ and 

KAn' are independent, as are E  and E'. 

(li) Using  a.. & ou« = 0  leads to coupled processes, each with 

AR(1)   correlation structure.   Now, Pvy(l) = aioP   an^ 

PYY(1) S Ogjp, where p s PyvCO)- From (7.3) we may derive 

pxx(21c) = (a12a21)
k 

pxx(2k+l) = («jaOax^a^P J 

k = 0,l.»»v 

This is the formulation used by Gaver and Lewis (1980) to 

derive negatively correlated processes.  In effect, they chose 

a12 = «2! = *• «»d »o 

px(k) = 
a k even 

. a p   k odd. 

Now, from (5.8) or (5.2) with the choice of K used here, 

p = Pyv^0) = (i^Prp^^Al+a). and Ci-ooslng E and E' to 

be negatively correlated results in a sign-switching 

autocorrelation for (X } and {Y }. 

(iii) Using a.. = a21 = 0 may yield a process with ARNA(l.l) 

correlation structure. The bivariate system is now 

11/5/86 23 LEWIS/DEIALD 



From (7.4) and (7.5) we have PwO) = ^IOP an^ PvvC1) s ffoo« 

where p = PvvCO). as before. Further, Equation (7.3) reduces 

to    p(«) = a22p(<-l).  1^2.     Hence,  p^ii) = Ogg.  € 2 0,    and 

PXX^ ss ^a12p^a22 ' * ^ ^ T1»18. {Y
n} ls a process with 

AR(1) correlation structure, as may be seen directly from 

(7.6). In addition. {X } is a process with ARNA(l.l) 

correlation  structure,   provided     Pvv(^} ^ ^*      ^ particularly 

simple way  to achieve this  is  to  take    E' ■ E •     The process 
n   n 

given by (7.6) is then very closely related to the EARNA(1,1) 

and DARMA(l.l) processes of Jacobs and Lewis (1977.1983). On 

the other hand, we can choose E' negatively correlated with 

E . e.g., its antithetic, and may then induce negative 

correlation in (X }. 

(iv) In order to generate the autocorrelation function corresponding 

to an AR(2) process, it is necessary that p(4) satisfy the 

difference Equation (7.3) for t * 1 also. Using p(-l) = p(l) 

this condition becomes p(l) = ♦^/(l-^o)- Rewriting this with 

the appropriate values for +., ♦«. and using the definition 

of Pvv(0 given by (7.4) yields the condition 

"22 * a11^12a2l'all°22) (7 7) 
P     5i?1*sn^?5i^T5 
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where    p « PyvC0)*    ** before.     In a model  In which    Xn    and 

Y     are independent the condition becomes 

"22 + an(alSB2l",alla22) - 0' (7-8) 

In this latter case, the condition (7.8) may be satisfied by 

choosing either: (a) a., s 1; or (b) a™ s 0 end 

allal2a21 s ®' ^lse (&) l*8^8 ^ example (1) above, i.e., two 

Independent processes, each with AR(1) correlation structure, 

one of which is degenerative. X = X i* Case (b) leads to a 

variety of possible models similar to those discussed in the 

previous examples, and one we have not noted yet. a process 

with Moving Average of order 1. NA(1). correlation structure. 

If a., s 0^. m cun - 0. the bivarlate process is 

Xn " "iSVl * C-IÄ 

n  n 

Thus, if E =£*.  then {X } has the correlation structure n   n        n 

of a MA(1) process and  {Y }   is a sequence of 1.1.d. 

exponentials. 

Hence, we cannot derive an AR(2) structure using (7.8). We require 

dependence between  X  and  V   and the satisfaction of condition 
n       n 

(7.7). Since the relationship between PYV(0) and Pvv'^ given by 

(5.2) and the condition (7.7) are fairly complex, we shall not attempt 

any general analysis. We note only that it is certainly possible and 

give an example. 
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If   (E .£')   have an Instantaneous correlation of 0.5. then 
n n 

p = 4/17.  from (5.2). and (7.7) is satisfied by an  = 0. a12 « 0.5. 

a». ■ 0.3  and  o^ ■ 0.1.  This choice of  K  and the correlation 

between  E   and E'  yields a process  {X }  whose autocorrelation 
n      n  "^       K       l n' 

function satisfies 

PXX(0 = O.lp^-l) + 0.15pxx(«-2), 

for all i i 1.    In passing, we may note that {Y } in this process has 

the correlation structure of an ARMA(2,1) process. 

We now consider the general case, i.e.. the process with ARMA(2.1) 

correlation structure, and note some of its properties here. Solutions 

of the difference Equation (7.2) depend upon the behavior of the roots 

2 
of the quadratic equation Z - ^ Z - ^ = 0.  It is easily verified that 

with our restrictions on {ati} «e have:  f. + t» < 1> 0 < +. < 2 and 

-1 < tn ^ *•  These ensure that the roots of the quadratic lie within 

the unit circle (See Box and Jenkins, ?976. p. 58-59. for a discussion 

of this).  However, we may also demonstrate that the roots are real. 

o 
The condition for this is ♦' + 4^2 I 0.    and 

♦, + 4*0 = (a-.+o^) + 4(a10a01-a11a00) j   ^2  v-n—22'   "
v"12 21 l*ll"22' 

tjj-a^)2 + 4a12a21 = Ki-«oo) + ^IO^I ^ 0- 

Figure 7.1 shows the region In which (^i>^o) wi^ ^le ^or t^ese 

processes. It is worth comparing this region with the more general one 

available for a stationary process with an AR(2) component.  It is given 
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in Box and Jenkins (1976. p. 59). and Is defined hy     ♦j + ^ < 1. 

f - f, < -1. -1 < ♦„ < 1. In our case, only positive ^ Is possible. 
12« 

and the characteristic quadratic has only real roots.   The most 

Important effect of this latter property Is that the autocorrelations 

are all positive If  p(l)  Is positive.  We have seen In the examples 

above that this restriction is not necessary in the cases when the 

autoregressive component is first order.   Also, we can introduce 

negative autocorrelation at lag one using (7.4) and (7.5) and negatively 

correlated (E .E').  This may persist for higher lags depending on ♦. 
n n 

and t9 as in the numerical examples. 

Figure 7.1. Region of (t*.*«) for the blvariate exponential process. 
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8. JOINT DISTREBUTIOK OF (X .Y ) 

We turn our attention to the formulation of the joint distribution 

of (X ,Y ) by Investigating the Joint Laplace-Stleltjes transform. 

For the Initial blvarlate model described In (3.1) and (3.2). the 

expression for the transform 

^x Y (s.t) = l{exp(-sXn-tYp)}. (8.1) 
n n 

Is very complicated. 

However, two special cases are easily verified. If KJ2' = Ki.' = 0 

for all n in (3.1) and (3.2), we have after considerable 

simplification 

^••^■(iWKFt] • c-2' 

1 w.p. a 
K    = 

n 0 w.p. 1-a 

This tallies with the result of Section 3 that under these conditions 

{X } and {Y } are independent univariate TEAR(l) processes, the first 

k t 
with correlation structure Pji(k) = «ii. the second with Pnn{t)  = «U«. 

If. in addition. K^ = K^ = Kn and 

(8.3) 

then  the distribution  of      (X ,Y )     turns out   to  be  Koran's Blvarlate v n n7 

Exponential distribution. Using (3.1) and (3.2). we have from (6.1) 

*x Y (s.t) = «[exp[-s{KnXn_1+(l-a)En} - t^Y^-K!-«)£;)]] . (8.4) 
n n       ^ 
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Using the independence of {En} and {E^}. the statlonarlty of {Xn.Yn} 

and conditioning on K . we have after simplification 

'XY*8-** " (l+s)(l+t) - ast ' (8'5) 

Equation (8.5) is the Laplace-Stieltjes transform for the Moran 

Blvarlate Exponential Distribution as given in Johnson and Kotz (1970. 

p. 267). 

9. OQNCLUSIGNS 

The NEAR(2) model has been demonstrated to yield a Bivariate First 

Order Autoregressive process with exponential marginals by cross- 

coupling and auto-coupling the two marginal processes. The process has 

the same correlation structure as the Gaussian Bivariate AR(1) process. 

The results for another bivariate process with exponential marginals 

that was proposed by Raftery (1982) using the NEAR(l) structure of 

Lawrence and Lewis (1981) hold only in very special cases. Even then, 

as we have shown, the correlation structure is identical to the Gaussian 

AR(1) model. 

The possibility of negative correlations was explored using the 

ideas of correlated innovation and/or cross-correlated attenuation. 

These situations occur frequently in modelling physical phenomena. For 

example, the same shock at time n to a system produces related effects 

in components given by X  and Y .  Likewise, if X  and Y  are 
'   n      n n      n 

flows in a river at two different points along a bank, then E = E' 
n  n 

represents a common phenomenon driving both series.  Finally, when both 
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series are TEAR(l) series linked by a coranon attenuation and independent 

innovations, the bivariate distribution of (X .Y ) was shown to be the n   n 

familiar Noran distribution. 

Taken together these options include numerous possibilities to model 

exponential bivariate time series.    There is still much work in 

parameter  estimation before   these models  can be widely applied.     They 

certainly lend themselves at this time to an analysis via simulation. 

One other detail  which could extend  the utility of   the model needs 

to be pointed out.     This   is   that    Y    .     in (3.1)  could be replaced by 

Y    a.     and    X    ,     in  (3.2) could be replaced by    X    ...     The model  is n-i n-1 v       ' r J       n_£ 

still well defined and has obvious physical  interpretation.     Properties 

of this extension of the model will be addressed elsewhere. 
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